MATRY X

Innovation Ecosystem Built on the Blockchain.
Token Ticker - MTX
Updated February 28, 2019

Steve McCloskey!, Keita Funakawa?, Vincent Brunet?
Scott Morgan?, Edgardo Leija®, Adam Simon%, Kyle Lee”, Max Howard®

Abstract— Innovation is often an iterative process;
scientists have mastered the art of standing on the
shoulders of giants. New discoveries are the result of
collaboration between mathematicians, scientists, and
engineers alike, each building on thousands of years
of established knowledge. In this paper, we present
Matryx: a platform that enables and incentivizes this
type of collaboration. Matryx is composed of 1. a col-
laboration system to track innovation and 2. a bounty
system to award solutions to scientific problems. The
focus of this whitepaper is to provide a technical
overview of Matryx Platform’s design.

I. INTRODUCTION

In 2000, the Henri Clay Institute of Mathematics
selected seven difficult problems in science, technology,
engineering, and mathematics (STEM) and offered a
$1,000,000 prize for a solution to any of these problems.
In 2003, Russian mathematician Grigori Perelman be-
came the first person to solve one of these “Millennium
Problems”: the Poincaré conjecture.

The Poincaré Conjecture has baffled mathematicians
since its formalization in 1903 by Henri Poincaré, the
father of topologyﬂ. Richard Hamilton, Professor of
Mathematics at Columbia University and one of the
most brilliant mathematical minds in history, laid the
foundations for Perelman’s proof. Christina Sormani,
Professor of Mathematics at the City University of New
York, broadly describes the novel efforts [of Hamilton
and Perelman:

“In recent years Hamilton had been investigat-
ing an approach to solve this problem using
the Ricci Flow, an equation which evolves and
morphs a manifold into a more understandable
shape. Then in late 2002, after many years of
studying Hamilton’s work and investigating the

ITopology is the study of the properties that are
preserved through deformations, twistings, and stretchings
of objects. See FEric Weisstein’s discussion on MathWorld:
http://mathworld.wolfram.com/Topology.htm]

concept of entropy, Perelman posted an article
which combined with Hamilton’s work would
provide a proof of Thurston’s Geometrization
Conjecture and, thus, the Poincaré Conjecture.”

After seven years of peer review, Perelman was
awarded the Millennium Prize. In an unexpected turn
of events, he declined the prize money, arguing that
the contributions of Hamilton and other mathematicians
played a significant role in the development of his fi-
nal solution. He declared his “disagreement with the
organized mathematical community”[2], arguing that his
peers deserved just as much of the award and recognition
and that it would be wrong to claim the money and fame
for himself.

Many mathematicians - like Perelman - consider these
lump awards to be unjust. New ideas are usually collabo-
rative in nature and are based on other people’s existing
ideas. Large awards incentivize competition rather than
collaboration and fail to reward most contributors. As
such, these lofty and unbalanced rewards may actually
be counterproductive. Perelman is only one of many re-
searchers who have rebelled against common incentives.
Current incentive structures do not reflect the needs of
collaborative fields.

Matryx provides a structure that reduces the friction
of rewarding collaborators. Rather than attributing all
the credit to one person or one group who proposes a
solution that is built on other people’s work, Matryx
tracks the provenance of assets, enables collaboration,
and divides rewards amongst all participants. In this
way, Matryx can reward each unit of progress towards
a given goal. Solitary research and siloed collaboration
are discouraged, while open collaboration in pursuit of a
shared reward is incentivized.

https://github.com/matryx/MatryxPlatform
http://mathworld.wolfram.com/Topology.html

II. PROBLEM
A. Distribution & Discovery

Research in STEM-related fields and academia is frag-
mented. Universities, corporations, institutions, and indi-
viduals host and share their resources in separate “siloed”
databases, often with tightly controlled access. Even
access to carefully curated private research repositories
is not easily purchasable by those willing to pay. It is
nearly impossible to find all current and past research
on a given topic without navigating a maze of citations
and licenses.

Innovation in STEM is hindered by this high friction
of discovery. Researchers may be attacking the same
problems with no knowledge of each other’s respective
progress. This wastes brainpower, time, and money.
Organizations like SciHub have attacked this problem
by circumventing technical and legal controls on infor-
mation and research, but a solution within the bounds
of the law is needed. In 2016, a gathering of ministers of
science in the EU demanded all scientific research papers
be made free and open by 2020 [3]. But this type of
legal reform is time-consuming and has no guarantee of
success, and doesn’t provide a technical solution to the
difficulty of discovery and dissemination of research.

Also, many academic researchers struggle with pub-
lishing quality research because of scarce funding and
pressure to move up in the academic world. In 2014,
Jeffrey Beall of the University of Colorado coined the
term “predatory publishers”, referring to publishers who
encourage researchers to publish without proper peer
review[d]. As a result, researchers must publish high
volumes of low-quality papers due to demands to advance
their careers in their respective institutions.

B. Attribution

In research and creative projects it is difficult to
attribute value across contributions. Contributions are
rarely tracked with any degree of accuracy, and there
is not always a clear path from problem to solution. As
such, owners are improperly (or not at all) compensated
for subsequent usage and “remixing” of their works.
Without clear attribution, incentives for innovation do
not accurately reflect contribution. This creates disin-
centives for the creation and distribution of valuable
works. This problem is common in STEM research,
digital media creation, and a wealth of other fields. Some
generalized solutions to attribution in communities have
been proposed by projects like Backfeed and Mediachain,
but no mature distributed attribution system has been
deployed.

III. MATRYX: A COLLABORATION PLATFORM

Matryx is a decentralized smart contract system for
the creation, attribution and incentivization of scientific
work. It provides a record of open units of scientific work
(“Commits”), problems to be solved (“Tournaments”),

and their proposed solutions (“Submissions”). This sys-
tem of Commits, Tournaments, and Submissions is the
core of the Matryx Platform. The Matryx platform is an
upgradeable system and can support the introduction of
new functionality. The ability to upgrade the platform
can be used to introduce new features (such as the up-
coming Matryx Marketplace) after having been migrated
to the Ethereum Mainnet. The platform’s upgradin
mechanism will be discussed in System Design ﬁ
Matryx can also interface with research tools such as
Calcflow® and NanomeH to accelerate the rate of math-
ematical and nanotechnological innovation. We will now
discuss the various components of Matryx, beginning
with Matryx Commits.

A. Commits

A Matryx Commit is a unit of work on Matryx tracked
by the Ethereum blockchain. The anatomy of Matryx
Commits is as follows:

1) owner - The owner of the Commit

2) timestamp - The unix-epoch time in seconds at
which the Commit was created on chain

3) groupHash - The keccak256 hash of the group
working on the line of work this Commit is a part
of

4) commitHash - The Commit’s unique identifier; a
keccak256 hash of: the creator of the Commit, the
salt used to claim the Commit and the content of
the Commit

5) content - A deterministic content Multihash (IPFS,
Swarm, etc)

6) wvalue - The value that has been assigned to the
Commit

7) ownerTotalValue - The total value that the owner
of this Commit has generated in this Commit’s
chain

8) totalValue - The total value of this Commit chain

9) height - The length of this Commit chain

10) parentHash - The parent Commit’s keccak256
hash
11) children - keccak256 hashes of all child Commits

whose content is derivative of this Commit

To create a Commit, a user must perform a commit-
reveal process to ensure that their content is not front-
run by malicious actors (see). We have renamed
commit-reveal to “claim-create” to avoid confusion from
reusing the term "commit”. This process requires the user
to make two transactions to record their work:

1) claimCommit

2) createCommit or createSubmission

To claim a Commit, the user must provide the Com-
mit’s hash to the claimCommit function. As mentioned
above, the commitHash is the keccak256 hash of the

2See https://nanome.ai/calcflow/
3See https://nanome.ai/

https://nanome.ai/calcflow/
https://nanome.ai/
https://nanome.ai/calcflow/
https://nanome.ai/

user’s address, some secret or salt, and the Commit’s
content. Once the claimCommit transaction has been
mined, the user is free to create their Commit by calling
the createCommit function. Arguments to this function
include parentHash (if this Commit was a continua-
tion of prior work), the salt used in claimCommit, the
content of the Commit, its value, and a special isFork
flag. When the user sets isFork to true, or creates a
Commit without a parent, a new group is created for
their Commit. When a member of a Commit’s group
adds a Matryx user to that group, the new group member
is then able to create Commits without the need to
transfer MTX to that parent. This is, users in a group can
freely commit off of one another’s commits in the same
chain. Conversely, passing true as isFork will assign a
new group to the user’s Commit, allowing the user to
work alone or with a new group of their choosing. This
will require the user to transfer to the forked Commit its
totalValue in MTX. All ancestor Commit creators can
then withdraw the share of MTX that corresponds to the
sum of their contributions’ values in proportion to the
total value of the chain. After calling claimCommit, the
user can alternatively call createSubmission, which will
create a new Commit and a Submission. The Submission
is then submitted to the Tournament designated by the
user. We will define Tournaments and Submissions in
precise terms in the two following sections.

B. Tournaments

Tournaments are multi-round competition smart con-
tracts. Tournament requirements are posted publicly and
are hashed in the smart contract system. The Tourna-
ment owner determines a reward, which is locked into a
smart contract for the duration of the Tournament. This
is done to arbitrate the transfer of funds without the need
for a third party, as would be the case in competitions
hosted by centralized entities. Once the Tournament
is public, users can create Submissions for that Tour-
nament. Applications such as Nanome, Calcflow, and
the Matryx web app will be the preliminary interfaces
capable of publishing generated content to the Matryx
Platform. However, Submission content can come from
any external application.

When the user decides to make a Submission to an
open Tournament, the underlying Commit content is
put together with some additional content (title and
description), signed, and made publicly available on the
Tournament. At the end of a Tournament, the Tourna-
ment creator distributes the bounty. If there are multiple
eligible winners, the Tournament creator can specify
the distribution that will be used to split the bounty
across the winning submissions. We will now discuss the
structure of a Tournament in further detail.

Tournaments consist of one or more Rounds of content
submission and evaluation. Formally, a Tournament is
composed of the following data:

1) wversion - The Tournament’s internal version

2) owner - Owner of the Tournament

3) content - A deterministic, decentralized storage
address to a JSON object containing information
about the Tournament. This information includes
the Tournament’s title, description and links to
any additional files describing the nature of the
competition

4) bounty - The bounty attached to the Tournament,
as assigned by the Tournament creator

5) entryFee - The cost to enter the Tournament as
a participant, as determined by the Tournament
creator

6) rounds - A list of all Rounds on the Tournament

7) entryFeePaid - All entry fees paid by each user

To clarify, a Matryx user first creates a Tournament
with content, bounty, entryFee, and the initial round
details. At the time of the Tournament’s creation, bounty
MTX will be transferred from the Tournament owner
to MatryxPlatform. This prevents Tournament creators
from advertising many high value Tournaments that are
not backed by their own balance of MTX. Subsequently,
when a Matryx user enters a Tournament, entryFeePaid
is set for their address, and entryFee MTX is transferred
from their balance to MatryxPlatform’s. This user is
free to leave the Tournament at any time, at which
point entryFee MTX will be returned to their account.
In the event that entryFee changes after the user has
entered the Tournament, upon leaving the Tournament,
the user will still be sent the amount of MTX that they
originally transferred in order to enter. owner is the
sole address able to create Rounds, select winners and
otherwise update the state of the Tournament, including
any of its content. At any time, anyone can increase a
Tournament’s bounty by making a specific call to the
Tournament. Additionally, each Tournament is said to be
in one of several time-dependent states. We introduce the
following notation to describe these Tournament states:
Let S! be the i state of a Tournament and R; represent
the j** Round. These states are:

1) S§ - Not Yet Open
2) St - On Hold

3) Si - Open

4) Sk - Closed

5) S% - Abandoned
To clarify:

1) A Tournament will be in S§ if Ry has yet to begin.

2) A Tournament will otherwise be in S} if a Round
R; has yet to begin and R;_; is Closed.

3) A Tournament will be in S} if the current Round,
R;, of the Tournament is in its Open state.

4) A Tournament permanently enters into S% when
the Tournament owner decides to close the Tour-
nament.

5) A Tournament permanently enters into S% if the
Tournament owner fails to select winners by the

end of the current Round R;, or if there were no
Submissions made to said Round.

Like Tournaments, Rounds exist in one of several time-
dependent states. We introduce the following notation to
describe these Round states: Let Si be the kth state of
a Round. These states are:

1) 5§ - Not Yet Open
) ST - Unfunded
) S5 - Open
4) S5 - In Review
) Si - Has Winners
) S§ - Closed

) Sg - Abandoned

Each Round of a Tournament, including the current
Round Rj;, is composed of:

1) start - the Round’s start time

2) duration - the Round’s duration in seconds

3) review - the Round’s review duration in seconds

4) bounty - the Round reward
Until time start, the Round remains in the initial state,
S§. At start, the Round transitions to state S5. Contrib-
utors may register new Submissions to R; at this time.
Once time duration has passed, R; will enter state S%,
at which point no more submissions may be made to
R;. The Tournament owner may then choose a set of
winning submissions until time start+duration+review.
This set may consist of one or multiple Submission
hashes. Upon the Tournament owner selecting a set of
winning submissions from R;, bounty MTX is allocated
among the winning Submissions. During this time, the
Tournament owner must also choose one of the following
courses of action for their Tournament:

1) DoNothing - Keeps R; open.

2) StartNextRound - Closes R; and opens Rj41

3) CloseTournament - Closes R; and the Tourna-

ment

In the case of the DoNothing option, R; will tran-
sition to S; until time start+duration+review. At
start+duration+review, R; 1 will be become the active
Round and R; will again transition into S§. With this
option, R;;q will begin at start+duration+review, end
at start+duration+review+duration, and otherwise in-
herit its parameters from R;.

In full, R;;; has the following parameters:

starte.41 = start 4+ duration + review
duration.+; = duration

revieWey = Teview

bounty.+1 = bounty
If the Tournament contains less than bounty MTX, the
remainder of the Tournament’s MTX will instead be
used to fund Rj;y;. If the Tournament has no MTX
left, round Rj;i; will transition to state ST at time

start+duration+review until the Tournament owner
adds more MTX to the Tournament and allocates some

to Rj41. Then, as long as the time is still less than
start+duration+review+duration, R; 1 will transition
to state S5 and become an active round.

If the StartNextRound option is chosen, R; will tran-
sition to S§ and Round R;;; will be created with the new
Round parameters passed by the Tournament owner in
tandem with their winning Submission set. In this case,
the Tournament must have enough MTX in its balance
to allocate to Rj41 the bounty that was specified.

Finally, the CloseT ournament option places both R;
and the Tournament into their Closed states (S¢ and S%
respectively) and distributes all remaining Tournament
funds to the winners of R;.

Without any mechanism to stop them, Tournament
creators may be motivated to use a Tournament’s bounty
to collect valid solutions, yet never pay any Submission
creators for their work. As a result of Sg, this behavior
is made impossible; in the event that the Tournament
owner elects to attack the system by refusing to properly
select a set of winning submissions or otherwise fails to
select this set by start+duration+review, R; will enter
Sg, wherein all participants who have submitted to the
round will be able to withdraw an evenly-divided portion
of the Tournament’s bounty. That is: regardless of the
Tournament owner’s actions, once the Tournament has
been created, the associated bounty will be distributed to
at least some if not all participants. In the event that
there are no participants, the Tournament owner will
be allowed to recover their funds. In this way, Matryx
attempts to counteract the risk of malicious Tournament
owners refusing to reward Submission creators for their
work. The reputation system also plays a role in mitigat-
ing this attack (see section).

C. Submissions

After entering a Tournament, a user can create one
or multiple Submissions only when the Tournament’s
current Round R; is in S5. A Submission is defined as:

1) tournament - The tournament address the submis-
sion was made to

2) roundIndex - The index of the round to which the
submission was made

3) commitHash - The address of the Commit the
submission references

4) content - A deterministic storage address to the
content of the submission, including its title and
description

5) reward - The MTX reward this submission has won

6) timestamp - A unix-epoch timestamp in seconds
for the creation of the submission

As described above, each Submission is submitted to
a particular roundIndex of a tournament. A particular
commitHash can be included in multiple Submissions,
but said Submissions cannot be entered to the same
roundIndex of the same tournament. We will now de-
scribe the Matryx System design.

IV. SysTEM DESIGN

Sitting above each deployed Matryx contract is Ma-
tryxSystem: a smart contract responsible for delegating
work to the intended library based on information from
the incoming call. MatryxSystem is the backbone of
Matryx, and underlies the proper functioning of each call
made to contracts on the Platform. A UML representa-
tion of the MatryxPlatform and MatryxSystem can be
seen in Figure a,

Calls to MatryxPlatform happen in several steps:

1) Caller type lookup on MatryxSystem

2) Library name lookup on MatryxSystem

3) Library address lookup on MatryxSystem

4) Calldata transformation lookup on MatryxSystem
5) Call to library function

In further detail:

1) Caller type lookup:

When a call is made to the Platform, the Plat-
form’s fallback function is invoked. The fallback
first makes a call to System to determine what type
of Matryx entity (Platform, Commit, Tournament,
or Unknown), is making the call.

2) Library name lookup:

Using the type from 1), Platform makes a call
to System to look up the name of the library
associated with that type.

3) Library address lookup:

Using the library name from 2), Platform makes
a call to System to look up the current library
address associated with that name.

4) Calldata transformation lookup:

Using the library name and function signature from
the incoming calldata, Platform makes one final
call to System to determine how to transform the
incoming calldata for the respective library call.

5) Call to library function:

With the transformed calldata, Platform makes the
call to the library function and returns the result.

While most of these steps are quite straightforward,
we believe step 4) warrants an explanation. Calldata
transformation information contains the following data:

1) modifiedSelector - The first four bytes of the hash
of the library function responsible for performing
the operations expected by the incoming call.

2) injectedParams - A list of values to be inserted
into the incoming call’s calldata before the pre-
provided parameters.

3) dynamicParams - A list of parameter indices in-
dicating which parameters from the incoming call
are dynamic.

After the Platform receives this data from MatryxSys-
tem, it will synthesize a call to the library at the address
received from System by modifying the incoming calldata
in the following way:

1) Platform will replace the function selector of the
incoming call with modifiedSelector returned by
System.

2) Platform will inject injected Params directly after
modi fiedSelector. injectedParams includes the
address of the original caller to the platform, so
that msg.sender is preserved in the call to the
library, and the address of MatryxPlatform, so that
the library has access to the data stored by the
Platform.

3) Platform will offset each parameter whose index is
contained within dynamicParams by the length of
injectedParams. This allows MatryxPlatform to
add parameters to an incoming call while maintain-
ing the integrity of the call’s existing parameters.

MatryxPlatform will then make a delegatecall to the

library at the address received from System with this
transformed calldata.

A. Upgradeability

In order to further iterate on the functionality of the
platform, the Matryx team took considerable steps to
ensure that MatryxPlatform contained a system to safely
and effectively upgrade its behaviors and storage model.
This is done via the aforementioned MatryxSystem.

There are two types of upgrades possible for Ethereum
smart contract systems:

1) Functionality upgrades
2) Storage upgrades

For purely functional upgrades, MatryxSystem can reg-
ister a library containing new functionality at any time.
All versions of MatryxPlatform are capable of undergoing
functionality changes and bug fixes in this manner with-
out the need to recreate the Platform’s storage within
another contract.

Unlike a purely functional upgrade, storage upgrades
require the creation of a new Platform version on Ma-
tryxSystem. Each new Platform library under must
then be registered to MatryxSystem under that version.
MatryxSystem’s currentVersion field must also be up-
dated, so that any calls made to this “new” Platform (or
any new contracts created by it) will be directed to their
respective upgraded libraries. The upgraded libraries for
a Tournament or Commit can then safely change the
structure of their data so that new Tournaments and
Commits can support new features.

In the interest of security, upgrades to Matryx can only
be performed by the Matryx team at Nanome.

V. PLATFORM SECURITY
A. Trust

Unfortunately, game theory alone cannot completely
eliminate all malicious behavior on a distributed sys-
tem. As a result, a reputation system is a necessary
component of Matryx. There has been prior work done
on distributed reputation systems, such as Eigentrust[5],

Eigentrust++[6] and PeerTrust[[7]; however, after critical
evaluation and partial implementation, none appeared
to be fit for an application running directly on the
Ethereum blockchain. The Matryx Team has thus opted
to store and compute reputation values within a cen-
tralized context. As a result, we’ve removed reputation’s
effect on the mechanics of transactions made to the
platform. Aside from reputation and sound game theory,
future iterations of the platform will also attempt to
place additional checks on Tournament owners by, for
example, requiring the use of an identity system for all
Tournament creators.

B. Attacks

In designing Matryx, several potential attack vectors
were considered. The following are some of those attacks
and the strategies we employed to mitigate them:

1) Tournament bounties give Submission creators a
strong incentive to bias the results of a Tournament
in their favor. One way a Submission creator might
attempt to achieve this is by entering similar Sub-
missions multiple times, in the hopes of increasing
the likelihood of being evaluated in Tournaments
with many Submissions. Because Tournaments do
not allow users to create multiple Submissions in
a Round using the same Commit hash, the only
feasible way to create multiple similar Submissions
is to claim and create multiple Commits with
slightly modified content. This attack is therefore
somewhat mitigated, as there is a significant time
and gas overhead for each new Submission the user
wishes to generate. Additionally, because creat-
ing a Submission generates an event, Tourmament
owners can efficiently filter Submissions by sender,
allowing them to see easily detect duplicate Sub-
missions by the same user. However, an anonymous
Submitter may still perform a Sybil attack on a
Tournament by making Submissions with multiple
Ethereum public keys. We have attempted to min-
imize the cost of this attack by introducing entr
fees to Tournaments, as described in Section
With an appropriately chosen Tournament entry
fee, the potential benefit from making multiple
Submissions can be balanced against the opportu-
nity cost of having to pay an entry fee for each new
anonymous public key used to submit a duplicate
Submission. Additionally, user reputation may aid
in mitigating this attack to a small degree by al-
lowing honest Matryx users to negatively influence
the reputations of users who attempt to perform
this attack.

2) One commonly exploited blockchain attack is the
phenomenon of frontrunning. Because Matryx is
deployed on a public blockchain, pending trans-
actions are visible to anyone. This was of par-
ticular concern for Matryx Commits. A malicious
actor could monitor pending transactions that cre-

ate new Commits, replicate their content, and
send their own transaction with a higher gas
price, increasing the probability that the fraudu-
lent, replicated Commit transaction will be mined
first. Without a Commitment scheme (“commit-
reveal”), the contents of the Commit would be at-
tributed to the malicious user instead of the honest
one. The current implementation of the Commit
creation process in Matryx uses a Commitment
scheme to completely eliminate the possibility of
this attack. Commits are created in two separate
transactions: The first transaction claims a Com-
mit hash for future use, and the second one reveals
the contents of the Commit. Matryx requires that
the second transaction occur at least one block
after the user has already claimed the Commit.
This ensures that malicious actors monitoring the
system cannot frontrun Commit creators, since the
Commit contents are only revealed on the second
transaction and are reserved for the user address
that made the original claim.

3) A malicious Commit creator could slightly modify
the content of an existing Commit and create a new
Commit without referencing the original Commit
as a parent. In such a case, the creator of the
original Commit would be left without credit, de-
spite the fact that a derivative Commit was created
from it. We plan to mitigate this attack by running
similarity checks against existing content when new
content is uploaded. Still, this solution will only
mitigate attacks made using Nanome’s interfaces
and will fail against command-line attacks. In
the command-line case, Commit timestamps offer
definitive proof of authorship and can be used to
settle legal disputes outside of Matryx in the event
of this particular attack.

4) Tournament owners may also attempt to attack the
Platform. The most obvious attack available to a
malicious Tournament owner is to refuse to reward
their Tournament’s bounty to any of its partici-
pants. The Tournament owner could then benefit
by seeing all work performed on a problem without
ever having to credit those who did the work to
solve it. As stated earlier, The Matryx Platform
eliminates this attack with state S§, wherein all
users who have submitted to the round are able
to withdraw an equal share of the Tournament’s
bounty in the event that the Tournament owner
does not select at least one winning Submission.

VI. FUTURE WORK
A. Reputation and Peer Review

Reputation is currently an auxiliary component to
give contributors and Tournament posters a public view
of how their contributions are valued. Determining the
value of a contribution given a wide range of bounties
will likely take human interaction. Individuals who have

a monetary stake in a reward mechanism will initially
have to place some trust in the Tournament creator and
assume that the creator will reward the Submissions
fairly based on the quality of their content. Contributors
will have a public record of where awards were sent and
may judge their Tournament creators accordingly.
Future implementations may use a voting system by
the crowd to help determine contribution value. These
votes may be Sybil attacked (though with on-chain
voting, the gas cost of voting will help mitigate this).
Additionally, the validity of these votes must be taken
into account as voters may not have the expertise needed
to formulate an accurate assessment of a contribution.
This leads the system into a model where curators who
have gained a higher reputation in certain context-areas
may facilitate the value assignments. We will explore the
possibility of combining financial incentives and willing
collaboration to generate a higher reputation.

B. Marketplace

The Matryx Platform will also serve as a medium for
the design and open exchange of digital assets through a
marketplace system; any user with MTX tokens will be
able to buy and sell assets under the licensing agreements
of the asset owner. The metadata for these objects will
be stored on the blockchain while the objects themselves
will be stored off-chain (similarly to how Tournaments
and Submissions store their contents).

C. Judging Boards

Rather than trusting the Tournament owner to judge a
Tournament, it may be advantageous to select a group of
third-party judges. This group should consist of experts
in the Tournament’s field. Many structures could be
implemented, including direct or weighted voting and an
oversight board with veto power. It would be possible to
reward these reviewers. Determining appropriate struc-
tures for this would require significant time and incentive
analysis. As such this capability will not be implemented
until later versions of Matryx.

D. Private Tournaments

A system can be conceived where the results of a
Tournament are made private, by encrypting all Sub-
missions with a public key of a key pair created by the
Tournament owner. This would ensure that no one but
the Tournament owner could access the Submissions. The
Tournament could proceed as normal, with the winning
Submission from each round revealed publicly.

E. Alternative Incentives

It may be that monetary incentives are not applicable
to scientists. Often it is fame or recognition for achieving
something that is sought after. Bounties are not limited
to a financial reward like the Millennium Prize. Title-
based rewards registered by trusted authorities could
potentially be placed as bounties.

REFERENCES

Christina Sormani. “Hamilton, Perelman and the
Poincare Conjecture”. In: (). URL: http://comet.
lehman . cuny . edu/ sormani / others /perelman /
introperelman.html.

Jeffrey Ritter. “Russian mathematician rejects $1
million prize”. In: (2010). URL: https : // phys .
org /news /2010 - 07 - russian - mathematician
million-prize.html.

Nadia Khomami. “All scientific papers to be free by
2020 under EU proposals”. In: (2016). URL: https:
/ / www . theguardian . com/ science /2016 /may /
28/eu-ministers-2020-target-free-access—
scientific-papers.

Elizabeth Wager. “Why we should worry less about
predatory publishers and more about the quality of
research and training at our academic institutions”.
In: 27.3 (Mar. 2017), pp. 87-88. URL: http: //
www . sciencedirect.com/science/article/pii/
S0917504017300217.

“The EigenTrust Algorithm for Reputation Manage-
ment in P2P Networks”. In: (Nov. 2002). URL: http:
//ilpubs.stanford.edu:8090/562/1/2002-56.
pdf.

“EigenTrust++: Attack Resilient Trust Manage-
ment”. In: (Jan. 2012). URL: https : / / www .

researchgate . net / publication / 261093756 |
EigenTrust _ Attack _ Resilient _ Trust _
Management.

“PeerTrust: Supporting Reputation-Based Trust for
Peer-to-Peer Electronic Communities”. In: (Aug.
2004). URL: https://wuw . researchgate . net /
publication /3297318 _PeerTrust _Supporting _
Reputation-Based Trust_for_Peer-to-Peer _
Electronic_Communities.

http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html
http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html
http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html
https://phys.org/news/2010-07-russian-mathematician-million-prize.html
https://phys.org/news/2010-07-russian-mathematician-million-prize.html
https://phys.org/news/2010-07-russian-mathematician-million-prize.html
https://www.theguardian.com/science/2016/may/28/eu-ministers-2020-target-free-access-scientific-papers
https://www.theguardian.com/science/2016/may/28/eu-ministers-2020-target-free-access-scientific-papers
https://www.theguardian.com/science/2016/may/28/eu-ministers-2020-target-free-access-scientific-papers
https://www.theguardian.com/science/2016/may/28/eu-ministers-2020-target-free-access-scientific-papers
http://www.sciencedirect.com/science/article/pii/S0917504017300217
http://www.sciencedirect.com/science/article/pii/S0917504017300217
http://www.sciencedirect.com/science/article/pii/S0917504017300217
http://ilpubs.stanford.edu:8090/562/1/2002-56.pdf
http://ilpubs.stanford.edu:8090/562/1/2002-56.pdf
http://ilpubs.stanford.edu:8090/562/1/2002-56.pdf
https://www.researchgate.net/publication/261093756_EigenTrust_Attack_Resilient_Trust_Management
https://www.researchgate.net/publication/261093756_EigenTrust_Attack_Resilient_Trust_Management
https://www.researchgate.net/publication/261093756_EigenTrust_Attack_Resilient_Trust_Management
https://www.researchgate.net/publication/261093756_EigenTrust_Attack_Resilient_Trust_Management
https://www.researchgate.net/publication/3297318_PeerTrust_Supporting_Reputation-Based_Trust_for_Peer-to-Peer_Electronic_Communities
https://www.researchgate.net/publication/3297318_PeerTrust_Supporting_Reputation-Based_Trust_for_Peer-to-Peer_Electronic_Communities
https://www.researchgate.net/publication/3297318_PeerTrust_Supporting_Reputation-Based_Trust_for_Peer-to-Peer_Electronic_Communities
https://www.researchgate.net/publication/3297318_PeerTrust_Supporting_Reputation-Based_Trust_for_Peer-to-Peer_Electronic_Communities

AV

Fig. 1.

(LibPiatiorm, LibTournament...)

Implementation
Library

i A
retum

Matryx Platform Design

MatryxSystem

+owner: address

+ contractType: mapping

+ platformByVersion: mapping
+ allVersions: uint256[]

+ currentVersion: uint256

+ createVersion()

+ setVersion(}

+ getVersion()

+ getAllVersions()

+ setContract()

+ getContract()

+ addContractMethod()
+ addContractMethods()
+ getContractMethod(}
+ setContract Type()

+ getContractType()

+ setLibraryName()

+ getLibraryMame()

1.0

dispatch
1

ret

digpatch

MatryxPlatform

+ info /f (system, token, owner)
+ data /f (all platform data)

+ () /f forwards to implementation library

+ setPlatformOwner()
+ upgradeToken()
+ withdrawTokens()

IMatryxPlatform

+ setPlatformOwner)
+ upgradeToken()
+ withdrawTokens()

+ getinfo()

+ isTournamenty}
+ isCommit()

+ isSubmission()

+ getTotalBalance()

+ getTournamentCount{)
+ getTournaments()

+ getSubmission()

+ blacklist(}
+ createTournament()

digpatch
|

MatryxForwarder

+ version: uint256
+ aystem: address

+ () /f forwards to MatyryxPlatform

rE)ﬂt‘nGﬁ %E)ﬂt‘nﬁ

.

MatryxTournament

MatryxCommit

T
®

Entry Point

Vv

v

IMatryxTournament

IMatryxCommit

+ getinfol)
+ getDetails()

+ getBalance()

+ getStatel)

+ getRoundState()

+ getCurrentRoundindex()

+ getRoundinfol)
+ getRoundDetails()

+ getSubmissionCount()
+ getEntryFeePaid()
+ isEntrant()

+ enter()
+ exit()
+ createSubmission()

+ updateDetails()
+ addToBounty(}
+ transferToRound()

+ selectWinners()

+ updateMextRound()
+ startNextRound()

+ closeTourmament()

+ withdrawFromAbandonad()
+ recoverBounty()

+ getCommit()

+ getBalance()

+ getCommitByCantent()

+ getinitialCommits(}

+ getGroupMembers()

+ getSubmissionsForCommit()

+ addGroupMember()

+ addGroupMembers()

+ claimCommit()

+ createCommit()

+ createSubmission()

+ getAvailableRewardForUser()
+ withdrawAvailableReward(}

Entry Point

M

Entry Point

	INTRODUCTION
	PROBLEM
	Distribution & Discovery
	Attribution

	Matryx: A collaboration Platform
	Commits
	Tournaments
	Submissions

	System Design
	Upgradeability

	Platform Security
	Trust
	Attacks

	Future Work
	Reputation and Peer Review
	Marketplace
	Judging Boards
	Private Tournaments
	Alternative Incentives

